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DESCRIPTION OF THE RESULTS

I[i su in mary. I have authored or co-aut hored ) p per:.,, whil I Ie • 11udii h ave I. ,?, I. .;t

on their dissertations (occasionally supported a&, .. 's undrer th eraiit

Numerical procedures for stochastic programming problems. Il to i•, o,•t pri-r", ip'o

in stochastic optimization was exploited in "scellarios and policy aeri'atorii t i tiii,'

der uncertainty' ( Ifathemattc.% of (1)' rat on., tb sfarch. ltI 199 1 j. 119-1 171 to build an all'r:, ý ! I

procedure, known as the progressiwye hedginrig 4 Pt algorithbin, for ,olvin- >tocha-s ic p1ii, a

problems. T his met hod has received a number of expori mawtaI iII pIe meint at i Si and -• . ,

to be relatively well understood. In [6] a dual strat egy for the i mphreniontat io of thO w ire'atie,

principle is proposed. Bradford's dissertation [121 is mo.itly devotod to hli questions raisod ,-

the implementation of the PH algorithmii t on machines with single or parallel processors. Ibe

analysis is both theoretical and numerical. In particular. be is able to obtain verv sharp bonnd

on the optimal setting of the key parameters of the algorithm. Numerical oxperinitenation witih!

small to medium size problems confirms that a good choice of the.se parameters will result in

significant speed up of the performance of the algorithm.

Dong [13] wrote subroutines that would facilitate the manipulation and machine feeding of

the data associated with the formulation of a stochastic optimization problem.

In addition to solutions tools. it is useful for the modeler of a stochastic optimization problem
to have at its disposal a number of numerical routines that would allow hini to check if his probiem

is well-formulated. Because stochastic programming problems can be quite complex, modeling
errors are potentially much more difficult to detect. Preprocessing toois that would identify

infeasibilities. unborindedness, and the contribution of randomness. are developed for stochastic

linear programs in [7]. and further specialized to the case of problems whose recourse process can

be formulated as capacitated network problems in [81. These articles also report about the use
of these techniques to analyze a number of stochastic programs found in the literature, and it is
demonstrated that quite a bit of insight could be gained from their use. To obtain an efficient way
of describing feasibility in capacitated network flow problems [8], there was a need to improve on
the characterization of feasibility provided by the Gale-Hoffman inequalities. this led to [9] that
proposes a very efficient (and elegant) procedure for eliminating the redundant inequalities.

Approximations for stochastic problems. Under this title, I shall review mainly applications
of epi-convergence in a stochastic setting, in particular in the design of approximation schemes
for stochastic optimization problems, to some estimation problems in mathematical statistics,
and in stochastic homogenization.

The overall strategy for solving a sfchAstic optimization problem is to replace a given
problem by a simpler one, often obtained by approximating the probability measure that governs

the distribution of the random quantities. The approximating probability measure is usually
obtained by some precise discretization scheme (usually requiring the calculation of conditional



expectations) or by sampling. In both cases, one is faced with the que,•tion of k,: mm i'f th,

resulting problem will actually furnish an approximate solution.

When proceeding by disc.rettizat.u;.0 one is confronted witth the followiio qu, liue : ; ion ,, a

random variable ' with values in and probability distribution I', an integraid f x V N ,

and a sequence of inte-rands and probahility rieasu res { (cf" . t' )., IN } 'ontvergi :

sernse to (f. P), what can be said about the convergeence of tho funi:ctionals

(Eef& )Wx 1i . xP"'Idc) to (KfJ)W :/ fL1 " I',.

Our interest in epi-convergonce coues froni the need to claim that the rin imizecrs of the flin
tionals Et'f converge to those of Ef. Articles [1] and [2] deal with thi., question. In the firt ,,,r 0

], the function f is fixed (dovsn't depend on il) with dom f(c..) constant. The fact Ihiat we;, a I
convergent measures P' - P 'oriver-e iiifornmiv on certain classes of sot, is use(i to oht,1i;i
the epi- and pointwise convergence of the integral functionals E"f to Ef. The result ih,,
applied to approximation schemes for deterministic and stochastic control problems. Alt ho;;h.

this theorem improved on those previously known, it was still somewhat less than totally .otis-

factory. On one hand. we were getting more than desired (epi and pointwise convergencei, and

on the other hand. the assumption of constant domain was certainly less than wished for. Ihe
results of the next paper [2] no longer suffers from these shortcomings. and in addition allows

for the dependence of f on v. A new notion of convergence for integrands is proposed. There

are no assumptions about the continuity of f with respect to ý and this opens tip a new range

of potential applications. Stochastic optimization problems with discontinuous cost functions i a

simple inventory example is analyzed in [2j). control of discrete events systems and stochaslci

integer programs involve integrands that are only exceptionally continuous in •.

The substitution of the given probability measure by an empirical measure generated by

a sample is justified by the law of large numbers for random lsc functions proved in [31. It is

shown that if {f' : -- fcns(.X), v E IN } is a sequence of epi-iid random lsc functions. then

e-lim•,( l/) yZ, f= Ef' almost surely (fcns( Y) is the space of lsc functions defined on X.. The

result is proved [I] when X is finite dimensional.

The relationship between stochastic optimization and mathematical statistics is pursued
in [4] and [5], In [4], it is shown that the consistency of parametric or nonparametric estima-

tors, even when there are constraints on the choice of the estimator, can he derived from the

a.s.-convergence of the solutions of stochastic optimization problems described above. The rela-

tionship between the asymptotic results for statistical estimators and those for the solutions of

stochastic optimization problems is also reviewed.

A standard approach to deriving the consistency of estimators relies on the almost sure
uniform convergence of the empirical measures on certain classes of subsets of A (the a-field of

events). By introducing a certain topology, eventually called the roaqgh topol(xiy, on the subspace

of closed sets in A, a criterion is given in [5] that can be used to check if a.s.-uniform convergence

of the empirical measures will actually hold for any given class of sets. One of the implications

of [5] is that we now know tha-t a.s.-uniform convergence of the empirical mneasurts holds for a

much richer class of sets than those identified tip to now.


